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ABSTRACT

Lizza, Gretchen D. M.A., Applied Behavioral Sciences Program, Wright
State University, 1991. Neural Network Classification of Mental
Workload Conditions by Analysis of Spontaneous Electroencephalograms.

Artificial neural networks were explored in this study to determine

their capability to discriminate workload tasks on the basis of

electroencephalograms (EEGs) recorded during task performance. EEG

traces were recorded by placing electrodes at the occipital (Oz),

parietal (Pz), central (Cz), and frontal (Fz) midline positions during

workload tasks. Two conditions of workload were presented to the

subjects. The first condition, an eye condition, varied whether eyes

were open or closed while subjects counted or sat quietly. In the second

condition, the workload conditions presented to the subjects were high

and low levels of display monitoring and math processing tasks.

Analyses of variance, discriminant analyses, and an artificial

neural network were evaluated for their ability to predict the eight

workload tasks using the signal features of EEG traces collected during

task performance. The mean log power in five frequency bands, alpha,

betal, beta2, delta, theta, was used to identify the effect of the tasks

on the EEG signal. Alpha band effects were primarily reported.

Significant differences were shown in the Cz, Pz, and Oz positions for

eyes open versus eyes closed effect. Workload tasks showed similar

significance at the Cz, Pz, and Oz positions due to the type of task

lii



performed. There were also significant differences due to high and low

levels of workload within tasks at the Cz and Pz positions. However,

these effects account for less than 6% of the variance as measured by

R2 .

Discriminant analyses were used to classify the tasks based on the

power from the composite set of frequency bands. Workload tasks were

classified correctly 39% of the time and eye tasks had an accuracy of

18%. A neural network was also used to classify the time series EEG

signal. Neural network classification was based on multivariate

predictors. The neural network was able to classify eye and workload

condition tasks with an overall accuracy of 35% for eye tasks and 33.95%

for workload tasks.
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I. INTRODUCTION

Throughout the past century, technological advances have increased

the complexity of machines. Symptomatic of the increased complexity is

the exponential growth of controls and displays in fighter aircraft. In

the 1940's, the number of switches and controls in the P-51 aircraft was

approximately thirty-two. Currently, the F-15 has approximately 305

controls. Not only has the n-umber of controls and displays increased

cver the past 50 years, but the amount of data presented to the pilot by

way of various displays has increased as the systems have become more

intricate and complicated. With this increased complexity, the nature

of the human interface has shifted from overt physical manipulation of

these systems to that of display monitoring. As a result, there is

growing emphasis on the need to understand human supervisory control

behavior, information processing, mental workload, and other higher

order cognitive processe elevant to the design and use of the system.

Characterization of human abilities and limitations in terms of

their impact on system performance and mission accomplishment launched

efforts to develop automated decision support systems for fighter

aircraft. Air Force programs, such as the Pilot's Associate, (Lizza and

Friedlander, 1989) and Adaptive Tactical Navigation system (Berning,

1991), have recently produced integrated systems or sophisticated

algorithms to help the pilot make more informed decisions. The Pilot's

Associate program is directed at integrating several knowledge-based

systems resulting in an electronic associate. The primary function of

1
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this associate is to monitor the mission situation and silot actions.

The data from this monitoring is analyzed so that the Pilot Associate

can provide timely, context-sensitive information to tte pilot and to

automate essential mission functions when necessary. 0-:imally, a

Pilot's Associate should serve as the mechanism to adaptively distribute

tasks needed to control the system to either the human zr the machine by

determining the available resources of each.

The current configuration of the Pilot's Associate partitions tasks

and automation levels with varying degrees of computer aiding. For

instance, in some cases the associate suggests alterna-:ve decisions

based on the current situation or implements corrective action through

the navigation system or autopilot. In others, it reconfigures the crew

station, or simply informs the pilot of the nature of z:e problem.

(Andes, 1987; Rouse, Geddes, and Carry, 1986).

To implement this flexibility, designers of the system must be

able to detect and interpret cockpit input/output variazles, human

sensory-motor limitations, and the pilot's workload and cognitive

resources at any given moment. Before flight, the pilot can tailor the

mode, type and quantity of information provided in the :ockpit. The

overall level of automation can also be preset. During flight,

automation levels and some task partitioning may be altered by the

Pilot's Associate based on resource modelling. This modelling relies on

an application of control theory and information processing models.

Aircraft state variables, control input variables, and some subjective

workload monitoring are used as basis from which to infer the pilot's

state and resource availability. However, the examples of assessment
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strategies and metrics presented in the Final Report of Phase 1 of the

Pilot's Associate Program (Aldern, 1990) are limited in nature (e.g.

"the visual resource level represents an estimate of how much the pilot

is using his eyes.") . Even the measures used to evaluate human resource

availability are somewhat vague as described by the report. For

instance, it is reported that a resource model computes values for many

different pilot resources, such as manual, visual, auditory, and

overall. However, neither the model, metrics, nor the measures used are

currently specified.

If the Pilot's Associate is to support the pilot as a decision aid

and provide responsive levels of automation, then it needs to

incorporate models of human cognitive processes and resource limitations

into the resource model. As mentioned earlier, characterization of human

abilities and limitations in terms of their impact on system performance

and mission accomplishment is important for developing or defining

variables to be used by a resource modelling module. However,

implementation of a theoretical characterization requires an assessment

method and reliable indices as well. At this early development stage of

the Pilot's Associate, even crude measures may be useful for identifying

choke points during the system's operation.

There are several cognitive and information processing models and

assessment techniques available for this purpose (Moray, 1979; Navon &

Gopher, 1980; Wickens, 1984) . In general, these models view the human as

having limited resources or capacity to process and respond to

information. The term, mental workload, is sometimes used to describe

the cognitive loading that is required to perform a task. Under most



4

conditions, an increase in task difficulty leads to an increase in

resource expenditure. When task requirements exceed the maximum

capacity, there is a performance decrement. The objective of an

assessment of workload in the resource model of Pilot's Associate

would be to determine existing or potential overload and adjust the

level of automation to avoid the performance decrement. Additionally,

levels of attention and arousal provide other potential indices of a

pilot's mental resources.

The perceptual and cognitive activities of flying an aircraft and

performing mission tasks demand sustained attention complicated by the

occurrence of infrequent and unpredictable events. Attention is usually

defined in terms of vigilance and connotes a conscious processing of

information (Kahneman, 1973; Norman & Bobrow, 1975) . The source of

information may be externally driven by data, or internally driven by

memory. Arousal is a distinct, albeit related, concept and is usually

defined as a general state varying from coma or drowsiness to alertness

or frantic excitement (Duffy, 1962; Lindsey, 1960) . These concepts as

well as mental workload are integral to the pilot's job of performing a

mission.

Researchers studying attention, arousal, and mental workload

advocate various methods by which to measure workload. One taxonomy for

these methods might be to group the analyses into subjective measures,

secondary-task procedures, and physiological measures. Of particular

interest to this study is the area of physiological analysis techniques.

Physiological techniques attempt to infer the level of mental workload

from aspects of physiological response to effort used to perform a task
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(Johannsen, Moray, Pew, Rassmussen, Sanders, and Wickens, 1979). One

possible physiological measure for inclusion in the Pilot's Associate

resource model is electroencephalography (EEG). By monitoring a

continuous signal such as the EEG, a Pilot's Associate could continually

evaluate the state of the pilot as he or she monitors and operates the

system and perhaps it could adjust the level of automation to relieve

periods of overload.

Systematic variations in EEG have been noted consequent to changes

in physical workload, as well as emotional arousal (Andreassi and

Juszczak, 1987; Freeman, 1987; Gevins and Cutillo, 1986; and

Landerfield, 1976). Unfortunately, the sensitivity, specificity, and

predictive value of the EEG signal has not been conclusively shown to be

an indicator of cognitive state. Controversy still remains as to the

diagnostic value of the EEG relative to demands on specific resources.

(Wickens, 1984; Wilson and O'Donnell, 1987). In 1980, Gevins and

Schaffer surveyed the state of the art of psychophysiological research.

They concluded that one reason for the variability in the research

findings was the possibility that the correlation of spontaneous EEG to

cognitive processing could be inherently flawed. An alternate

explanation for the lack of definitive findings could be that the

interpretive techniques are inappropriate or imprecise. For this reason,

an alternate analysis approach to analysis using Analysis of Variance of

the difference of the means in the log power of the frequency band of

the EEG is sought.

One possible analysis alternative is to use artificial neural

network technology. This technology possesses interesting
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characteristics that led to assessing it as an alternative analysis tool

for EEG. Those characteristics are discussed further in the section on

neural networks. The present study evaluates a back-propagated neural

network's ability to classify EEG traces resulting from arousal and

mental workload tasks. The tasks used in this study were selected to

represent typical cockpit arousal and workload tasks. A task varying eye

state (open or closed) was used to represent arousal levels. The display

monitoring and mathematical processing tasks from the Criterion Task Set

(CTS) battery (S:.ingledecker, 1984) were used to manipulate mental

workload. The CTS battery was designed to impose demands on the

functional information processing resources of human operators.

BRAINWAVE ANALYSIS TECHNIQUES

The human EEG, first reported by Berger in 1929 (cited in Lopes da

Silva, 1987), was based on the observation that electrical recordings

from the scalp exhibited wave characteristics. These brainwave signals

occur spontaneously and are the result of the on-going electrical

activity of the brain. A plot of these voltage changes over time is

called an electroencephalograph (EEG).

The actual signal is detected by means of surface positioned

electrodes. A potential gradient between the skin and the electrolyte

(an electrochemical gel) is formed. Because of the large distances

between the electrode and the generating brain cells, the EEG signal

requires significant amplification, on the order of a factor of 20,000

or more (Barlow, Morton, Ripoche, and Shipton, 1974). Tissue impedance

and interference also complicate EEG detection. For instance, physical



movement of scalp could vary the positioning of the electrode and

disrupt the stability of the recording. Although somewhat difficult, the

recording and analysis of the spontaneous brainwave have allowed

researchers to detect and collect information with minimum invasiveness.

Figure 1 shows typical EEG traces.

Eye

Fz

Pz

Oz

1 5 10 15
seconds

Figure 1
A 15-second, 5-Lead Sample of an Electroencephlogram

Detected During a Math Processing Task

The electrocortical potentials in the EEG are irregular and are

generally thought to indicate the electrical integration of

multicellular activity. Analysis and interpretation of these spontaneous

potential shifts have centered on interpreting their role in gross

behavior and correlating variation in these potentials with higher

cortical functions (Gevins, 1980).
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Frequency Analysis of F.. Berger (1929) associated the electrical

activity of the brain to levels of awareness or conscious states. Using

a Fourier transform, Berger analyzed the spectral features of the EEG.

By this method, he discovered that there was a disruption of the "alpha

train" while subjects performed mental arithmetic. Berger correlated the

change in the signal with cognitive functioning.

The Fourier transform, used for spectral analysis of the EEG, is

an alternate way of describing the time series EEG in terms of the

frequency components of the signal. In the time domain, a continuous

function can be represented by the form h(t) = _f h(t)e 2ni ft dt,

where h is some quantity described as a function of time t. The signal

is mapped from the time domain, into a representation of amplitude H.

Amplitude H is a function of frequency f, described by the equation H(f)

= _f H(f)e-2 ift dt, for a finite interval of time. If t is measured

in seconds, then f is measured in cycles per second or Hertz.

The FFT, a computer implementation of the Fourier transform, is a

discrete Fourier transform and is primarily used in EEG research today

(Irwin, 1975) . In most cases, the function h(t) is sampled at evenly

spaced intervals in time. This spacing is referred to as the sampling

rate. The Fourier transform of the time domain into the frequency domain

is estimated from a finite number of sample points from the continuous

signal. The results of the discrete Fourier analysis are expressed as

the amount of power in each component frequency.

Using the FFT analysis techniques, human EEGS are typically

classified into four principal frequency bands, called the alpha, beta,

I
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delta, and theta bands. The variability and composition of these

frequency bands have been investigated as a function of

attention/arousal states and workload. Primarily, EEG studies have

focused on looking at alpha band activity as the index for

attention/arousal. Activity in the alpha band (8-12 HZ) has been found

to increase as people relax (Doyle, Orstein, and Galin, 1974). The alpha

activity can range from a few microvolts to about 100 microvolts,

depending on whether the subject is tense and anxious, or relaxed. Other

research on EEG refers to these changes in the alpha band activity as a

desynchronization effect. Desynchronization has been related to the

effects of the visual/motor manipulation, auditory discrimination, and

mental arithmetic (Dolce and Waldeirer, 1974; Giannitrapani, 1975;

Walter, 1950). Further, the alpha band activity has also been shown to

decrease during visual stimulation, attention, and orienting (Rebert and

Low, 1978).

Beta band (13-30 HZ) represents the highest frequencies thought to

be significant in EEG. Thompson and Thompson (1965), analyzed EEG

activity during verbal learning in a series of experiments but they

concluded that the beta band effects were primarily related to focused

attention. Other research has suggested that beta band activity is found

to increase during focused attention merely because it becomes more

visible as alpha frequencies are blocked (Freedman, Hafer, and Daniel,

1966). These results indicate that beta band activity may be affected by

tactile, auditory, and emotional stimulation. Beta has the largest band

width of the four principal frequency components of the spectra. For

this reason, some researchers have split the beta band into two ranges,
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referred to as betal and beta2. The lower beta range is thought to have

less contamination due to muscle artifacts and to he better correlated

with mental workload (G. Wilson, personal communication, 10 May 1991).

Studies have reported decreased theta (4-7 HZ) and delta (below 4

HZ) band activity during high arousal or stress. These lower frequency

rhythms have also been reported as being common du:ing unconsciousness,

regardless of whether the state is due to sleep, anesthesia, cranial

trauma, or a convulsive seizure. (Burch, Dossett, 7zrderman, and Lester,

1967).

in 1980, Gevins and Schaffer critically reviewed studies using EEG

correlates of performance on cognitive tasks. They =ategorized EEG

research into two groups: 1) studies that attempted to define the

functional topography of electrocortical activity wvth complex tasks,

and 2) studies that manipulated complexity or diffi:ulty of tasks. The

first category focuses on brain mapping. That is, relating cognitive

activity to specific areas or regions of the brain. The second category

of studies is designed to determine the diagnostici:y or sensitivity of

the EEG to cognitive activity. It is the second category that is of

interest in attempting to build the resource modelling capability for

the Pilot's Associate.

However, their summary of the state-of-the-art )f this paradigm was

not encouraging. Gevins and Schaffer stated that although it would

appear that the degree of EEG desynchronization would be directly

related to degree of task difficulty, none of the s:udies in their

review, except one by Gale (1978), had adequately q.antified this
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relationship. They further revealed that almost all other studies have

been flawed by confounding manipulation of task difficulty with other

uncontrolled factors or by inadequate or ambiguous EEG analyses. Wilson

and O'Donnell (1987) also concluded in an overview paper that one single

physiological measure may not be sensitive to the multi-dimensional

nature of workload. Further, they suggest that measurement montages

might provide more sensitivity, and as a set, may even prove to be

diagnostic.

Even within a montage, the individual measures must be reliable and

sensitive. EEG has not been shown to be either. The lack of information

about the source and composition of the EEG signal may shed light on why

there has been minimal success in correlating the EEG with cognitive

activity using current analysis strategies. Recent postulates about the

EEG signal (Papnicolaou and Johnstone, 1984) hold that the brain's

electrical responses are reflective of: 1) the interaction between the

organic peculiarities of the brain tissue; 2) the automatic brain

operation for maintaining bodily functions; 3) the amount and type of

sensor signals; and 4) the information processing operations at any

given moment. If these postulates are accurate, the EEG signal is

produced by many physical, automatic, and cognitive processes. The

electrical prcperties of these activities and their integration, as seen

in the resultant EEG signal, are not well understood.

Papnicolaou, Johnstone, and Freeman proposed more integrated

theories of the brain's electrical response. Skarda and Freeman's (1987)

description of the ensemble activity of the brain as a form of time

varying spatial patterns also supports a view of brain function that
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requires a multivariate, pattern recognition approach to EEG analysis.

He hypothesized that the brain's activity behaves in a self-organized

process of adaptive interaction with the environment. These theories

call into question the value of linear signal processing as an analysis

tool for EEG.

Spectral analysis, which is the signal processing technique used

primarily in EEG analysis, makes assumptions about the linearity of a

signal and uses a statistical sampling processes. Schmitt, Dev, and

Smith (1976), and Lopes da Silva (1987) concluded in their general

reviews, that research based on spectral analysis has attributed too

many functions to the alpha and other bands of the EEG. Lopes da Silva

analyzed the signal processing aspects of EEG research. His discussions

of the loss of phase information when using Fourier transformation and

the problems with establishing an optimum period of analysis suggest

that the current analysis techniques are limited, or possibly

inappropriate, and that more sophisticated approaches such as

multidimensional, nonlinear, parallel signal processing may provide

better tools for indexing the brain's functions. However, if the goal is

to interpret the EEG, or more importantly, to find reliable indices of

the effects of workload, then even the most comprehensive computational

approaches may not be sufficient because they may not adequately reflect

the nature of the neural system itself.

One class of connectionist neural models may provide an alternative

to the statistical approaches previously taken. In their

hardware/software form, these models are sometimes referred to as

artificial neural networks or simply neural networks. Over the last 25
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units are organized into layers and each layer sends signals to, and

receives signals from, other layers. The state of the nodes at each

layer results from a synthesis of the states of the other layers from

which it receives input. The computational model is distributed rather

than serial.

The purpose of this effort is to determine the utility of neural

networks for EEG research and analysis. The study is focused on

investigating the ability of a neural network to categorize arousal and

workload tasks based on information in the EEG signal itself. The

advantage of this approach is that a classification of the tasks is

directly output from the neural network.

Classification by the neural network revolves around resemblance.

That is, if the EEG pattern from a particular task, A, resembles the

previously presented patterns from that task, more than any other task,

then it resembles the task pattern enough to be classified as task A,

also. This process of classification is sometimes referred to as pattern

recognition or mapping. It is this emulation of pattern recognition

schema or mapping approximation capabilities that distinguishes neural

networks from other architectures.
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Figure 2
Hidden Layer Perceptron with N Continuous Valued Inputs and Sigmoid

Nonlinearity Function

Network Architecture. The uniqueness of neural network technology is in

the architecture. Neural network architecture is specified by net

topology, node characteristics, and training or learning rules. This

study evaluates a hidden-layer, backpropagated perceptron. A perceptron

consists of processing elements, which are interconnected with
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unidirectional signal channels called connections. A node is a simple

unit processor and is the basic element of the perceptron. In this

study, the nodes are analog and non-linear. Parallel input values, (e.g.

amplitude), arrive at the first layer of nodes via a preset number of

input connections. Each connection can be binary or can vary over a

large range for the continuous-valued input. The static and dynamic

relationship of all the nodes and their interconnections is trained by

presenting a number of samples of the signal and relating those samples

to the desired response.

The nodes can be thought of as short term memory or threshold logic

units. Ine input values arriving at each node form a situation feature

vector A =(al, ..,ai) " The weights between all i nodes and the jth

output node can be represented as a vector W-, where Wj =(wlj ... wij) ,

and where wij represents the connection strength between the ith node

input and the jth node output strength (Lsj), which is the response

unit. The weights (wij) can be thought of as similar to long term

rremory. A threshold function is used to scale the output value of a

node. A nonlinear sigmoid function used as the nodal threshold fuction

can be found in Figure 2b. The sigmoid threshold function determines

how closely a new input pattern must match in order for it to be

classified as another exemplar of a particular task. When the value of

the sigmoid is near one, there must be a close match. A lesser value

allows a poorer match. A new sample is either accepted as a match or

becomes a new class.

The network connections are given default weights initially which

are then refined through an algorithm called backpropogation, an
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application of a delta or chain-rule (Hecht-Nielsen, 1990). The

algorithm is said to supervise the weight adjustment, called training of

the network, so that noise in the input sample becomes less relevant as

more samples or training passes are presented to the net. In the

backpropagation strategy, the network's operation consists of two

sweeps. The first is a forward sweep where the input is propagated

1hrough each layer adjusting the weights towards the final desired

output value. Then the actual output is compared to the desired output.

The difference between the actual and desired output is calculated. An

error correction based on the difference is then propagated back through

the layers to update the weights and refine the node surmation process

for future input.

The input vector used in the present study was comprised of the

digitized EEG time histories collected from subjects during performance

of the tasks. The goal of this effort was to train the neural network

until it converged to a stable characterization of eight workload tasks.

This was achieved by presenting the neural network representative EEG

samples from each task and assigning each sample with a number

representing the task. For example, a sample from an eyes closed task

was presented to the neural network and assigned the task number 1;

whereas, a sample from the eyes open task was given the task number 2.

As more samples of each task were related to their specific number

label, the net developed weighting values based on like features of the

samples. This reduced the noise or the signal features which were not

consistent across the samples. In essence, the neural network refined

its link weightings based on signal consistency within each task.
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Eventually, it converged on an optimum weight for each task by

maximizing the similarity within a task and the differences between the

tasks. Once stable, -he network was then presented new samples from the

tasks and its ability to correctly classify the samples by task was

evaluated.

Rationale and Hypotheses- This study was motivated by the need to find

meaningful parameters relating EEG activity and cognitive processes at a

macro level to provide reliable indices of workload to systems such as

the Pilot's Associate. Based on the discussion of current EEG research,

there appears to be no reliable method producing valid indices for this

purpose. Neural networks were investigated as an alternative to

classical analysis techniques.

The parallel nature of the neural network provides sufficient

rationale for investigating this technology as a new method for

investigating EEG as a source of information about cognitive processes.

But, the most compelling feature of the net was its potential ability to

classify signals with low signal-to-noise ratio. Neural network's have

been shown to estimate a consistent signal and enhance the

distinguishing feature of the signal (Honenberger and DasGupta 1989;

Kohonen, Barna, and Chrisley, 1988; Tamura and Waibel, 1988) . Signal

enhancement within a noisy feature set is particularly useful since

little is understood about the composition of the EEG signal. The neural

network approach may be viewed as a noise reduction strategy. Another

advantage of neural network signal analysis is that these systems make

no prior assumptions about the statistical properties of the signal. If

there is meaningful and usable information in the EEG resulting from
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work or thought, mapping from a set of noisy signals to that of noise-

free stable response should provide a way of finding it.

The hypothesis for this study is: If artificial neural network

techniques provide a parallel processing signal processing capability

for signals in the time-space domain, then these systems will provide a

sensitive tool for classifying on the basis of variations of workload

the multidimensional signal of the EEG.

This study uses an artificial neural network to classify workload

related EEG time histories. It -ompares the classification performance

of a neural network to the traditional FFT analysis used to analyze EEG/

workload paradigms. Specifically, the following questions were

addressed:

1) How sensitive is an FFT in its ability to discriminate levels of

workload?

2) How sensitive and diagnostic is discriminant analysis based on

spectral features?

3) What level of sensitivity does a neural network have for the

same taske using temporal data?

In order to answer these questions, standard arousal and cognitive

performance tasks with two levels of difficulty were used to provide

known levels of performance. Time histories of EEG were collected and

digitized while subjects performed various workload tasks. An FFT was

used to transform the digitized data into the frequency domain. Data

were then analyzed using ANOVA and discriminant analysis. Neural
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networks were configured and trained on half the available EEG data. The

remaining half of the data were used to test the abililty of the neural

network to classify arousal and workload tasks and difficulty levels of

these tasks.

.. ......



II. METHOD

SUBJECTS

Subjects were eight men and women who had experience with

physiological experiments similar to the current study and were paid for

their participation. Age ranged from 20 to 35 (mean = 24) years. All

subjects reported having normal or corrected to normal visual acuity

(from 20/20 to 20/40) . The subjects were screened for special medical

problems. All subjects reported they had not used medication, drugs, or

stimulants, including caffeine the morning of the experLment.

APPARATUS

Display. A Commodore 64 computer and color video monitor (Commodore

model 1702) were used to generate the mathematical and display

monitoring tasks. The keypad was made up of four buttons in a north,

south, east, west configuration.

EEG equipment. Beckman silver chloride surface electrodes were

placed at the occipital (Oz), parietal (Pz), central (Cz), and frontal

(Fz) midline positions. The positions were located as per the

International 10-20 placement positions standard (Jasper, 1958) . An

additional electrode was placed over the right eyebrow for eyeblink

artifact rejection. Mastoid electrodes served to provide a reference and

electrical ground for the subject. All equipment was inspected by the

21
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safety office of the Armstrong Aerospace Medical Research Laboratory,

Wright Patterson AFB, Dayton, Ohio. All hardware, including the actual

point of contact with the electrode leads, to the electrical amplifier

connections, were approved for human use. No adverse reactions were

encountered with this equipment. Subjects were assured that if

displeasure or discomfort was experienced, they were free to terminate

exposure without penalty (Appendix A).

Aplification, Signals were amplified fifty thousand times by Grass

P511 amplifiers. The signals were processed through a bandpass filter of

0.10 to 30 HZ and notch filtered at 60 HZ to reduce noise from power

line oscillations around this frequency.

TASK CONDITIONS

Two manipulations were defined for this study, a set of eye

conditions and a separate set of workload conditions. Four tasks were

developed for the eye manipulation and four tasks were developed for the

workload manipulation, producing total of eight different conditions

overall. As noted before, these tasks were selected because they

represent the types of tasks in a cockpit and are commonly used in

arousal and workload research paradigms.

Eye Condition. Four tasks that constituted the eye condition were

formed by the factorial combination of two variables, counting and eye

status. Subjects either counted silently, or did not count during both

an eyes-open and an eyes-closed condition. Prior to the no-counting

tasks subjects were asked to relax, blank their minds and during the
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eyes-closed condition they were asked to keep their eyes closed for the

entire three minutes. The room was darkened for these conditions. For

counting tasks, the subjects were asked to count backwards from 1000 by

sevens to insure consistent tasking across the eyes-open/eyes-closed

conditions.

Workload Condition. Four conditions were used for the workload

manipulation. These were two levels of difficulty for a mathematical

processing task and two levels of difficulty for a display monitoring

task. The mathematical processing task from the Criterion Task Set was

used. The subjects were required to solve a number of simple addition

and subtraction problems and determine whether the answer was greater or

less than five. Subjects then used a designated key to indicate the

response. No problem had an answer equal to five. Practice effects were

minimized by five practice trials at each level prior to EEG collection.

Two levels of workload were presented. A low workload task

consisted of mathematical operation problems requiring addition or

subtraction of two numbers. A high workload level required the subjects

to perform three operations in each problem (e.g. 4+3-2+3 or 9-6-1+4).

The sequence of numbers added and subtracted did not result in numbers

less than 0. Performance measures of reaction time and accuracy were

recorded. Subjects were instructed to perform as quickly and accurately

as possible. Accuracy rates of 85% were acceptable. After the first,

three minute run, the subjects were given performance feedback to insure

an acceptable speed/accuracy trade off.
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Problems appeared one at a time and were experimenter-paced.

Therefore, the number of problems did not vary. Stimuli was presented at

a fixed rate of 1 problem every 3.5 seconds. Subjects had to respond

before the next equation was presented. The subjects were instructed to

be as quick and as accurate as possible. The problems were presented in

two trial blocks for three minutes at each level.

Subjects were also given a standardized loading task designed to

place variable demands on their visual perceptual information processing

resources. The CTS display monitoring task used in this experiment is

based on a probability monitoring paradigm developed by Chiles (1968)

The subjects performed at two levels of workload, low and high, for the

tasks. Low workload consisted of one dial represented on the screen. The

high workload level had three dials.

Subjects were asked to monitor computer generated displays which

represented electromechanical dials. Each dial was represented by a

numbered rectangular box consisting of six vertical hashmarks and always

appeared in the same position on the monitor. A pointer positioned below

the six marks moved randomly to each position with equal probability.

This position was updated at a rate of two moves per second. At some

point, one of the pointers began to move in a prescribed pattern and

stayed on one side of the dial more than the other. This nonrandom

movement served as the signal. The subjects' task was to identify a

signal. In the low workload condition, this corresponded to a yes/no

decision. In the high workload level, the subject had to decide which

dial contained the signal. When the signal was detected, a key on the
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computer keypad that corresponded to the dial showing a signal was

pressed. The signal recognition had a default of 30 seconds. Only one

dial exhibited a signal for any given trial. The signal lasted 30

seconds and occurred over 60 pointer moves. Subjects were instructed

that there would be two or three signals per period. Twenty-five seconds

separated signal onset after the previous signal had been recognized.

Subjects were familiarized, via practice trials, with all levels prior

to data collection. Instructions to the subjects emphasized certainty in

signal detection to minimize false positive identifications. Performance

measures of reaction time for correctly identified signals, missed

signals, and false alarms (signals identified when no signal is present)

were recorded. After the first three minute trial, subjects were given

performance feedback.

PROCEDURE

The experiment was run over a two day period. The first day, served

as an introduction and familiarization day. Subjects were fitted with

EEG electrodes. Each subject was given five practice trials for each

level of the mathemitical and probability monitoring tasks. During these

trials, the subjects fixated on a small dot in the center of the

display. A ready signal was given by the experimenter and subjects

initiated the tasks by pressing a start switch. Questions regarding the

CTS tasks, use of the keypad, and performance levels were answered and

problems were resolved at that time.

The second day was used for data collection. Subjects were seated

in a sound-attenuated, electrically shielded test booth, designed
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especially for physiological measurement. They were instructed to relax.

The schedule and all tasks were reviewed with each subject. EEG

electrodes were applied and the subjects were asked if they were

comfortable and ready to start. Individual task instructions were given

before each task and questions were answered. Each trial was three

minutes in duration with approximately a minute rest between runs.

For no-counting condition trials, each subject was directed to

relax and leave eyes closed, (or opened), through the entire three

minute trial. For counting conditions, subjects were instructed to

concentrate only on the counting task and to count silently by sevens,

backward. The subjects used their own pace and were required to begin at

1000 again if they ma e a mistake. Subjects were instructed that in the

event the "0" is reached before the three minutes were up to begin the

count agair. Subjects began counting backwards from 1000 upon a "begin"

signal oy the experimenter.

For the CTS tasks, the experimenter gave each subject a ready

signal and runs were initiated by the experimenter pressing the start

switch. Procedures were the same as used during practice trials. Each

subject received all levels of all tasks. The order of presentation for

the eight conditions (eyes open, eyes closed, eyes open-counting, eyes

closed-counting, math processing-high, math processing-low, display

monitoring-high, display monitoring-low) was based on a Latin Squares

Design (Appendix D). Two eight by eight Latin squares were used to

randomize presentations for each run. Each condition was given twice, as

first or second presentation in a pair of conditions. This was done to

avoid the confounding effect of the order of presentation.
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EEG Signal Conditioning. Data resulting from the experiment were 16

three-minute time histories of the EEG per subject. These resulted from

the eight tasks repeated twice per subject. All data were collected on-

line while subjects were performing the tasks. Segments of time

histories with artifacts were eliminated from selection for the

analysis. Artifacts such as muscle electrical potential which cluster at

the high beta band (Gevins and Remond, 1987), eyeblinks at the 1-5 HZ

range (EOG), head and body movements, perspiration, and low frequency

instrumental artifacts under 1 HZ have been traditionally seen as

contaminates and removed from the data. The raw analog EEG data were

screened for these artifacts in order to provide a "clear signal" for

analysis. For each of the three minute trials, at least 100 seconds of

the 180 seccnd task time was needed to be relatively artifact free to

consider the data usable for the analysis. This criterion was met for

all subjects for all tasks.

The identification and Lemoval of artifacts was based both on an

automated eyeblink rejection algorithm and upon expert judgement of

supervising laboratory personnel. Gevins (1980) compared automated

artifact rejection algorithms to consensus expert judgement. The

algorithms were able to identify only 65% of the 229 events noted by the

experts. In addition, 27% of the algorithm's detections were false

positive. In view of these findings, by combining both algorithmic and

expert opinion the reliability of the resultant data were enhanced. By

reducing the number of artifacts through the EOG transform algorithm,

ideally, 128 times histories with only a few sections missing would have

been generated from this experiment. Only one session from one subject

I im i-r m m m m
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was considered unusable. Therefore, 120 time histories were used for the

analyses.

The data from this study were subjected to two different analysis

techniques, that of classical statistical methods and by neural network

analysis. Data conditioning of the data for the these analysis required

two different procedures. Those procedures are outlined in the Results

section for each analysis technique.



III. RESULTS

Data were analyzed using ANOVA of the spectral features. This

analysis was used to compare the sensitivity of the neural network to

that of the FFT sensitivity. The process of the analyses was as follows:

1) an FFT was performed to convert the EEG signal into its component

spectral features; 2) Analysis of Variance techniques were then used on

spectral features of the data to establish the baseline sensitivity of

the spectral features: 3) Discriminant analysis was used to classify the

eight tasks so that performance based on statistical analysis using

spectral features could be compared to the neural network's

discriminative capability based on full signal features; 4) An

artificial neural net was used to discriminate between the eight tasks.

The input to the neural network was the full signal features of the EEG

time histories resulting from the tasks.

Results of ANOVA analysis are reported first, followed by the

results of the discriminant analysis. Finally, the results of three

configurations of the neural network are presented. Initial

configuration was a 800 x 100 x 8 three layer perceptron. Because of the

inability to converge at this configuration, a 800 x 250 x 8 network was

trained and tested. Poor performance at this configuration led to a

third attempt on a 800 x 300 x 8 network. The results in this study are

based on the third and final network configuration.

29
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FFT ANALYSIS OF VARIANCE

ANOVA was used to analyze the effect of workload tasks on the log

power of the alpha, betal, beta2, delta, and theta frequency bands. This

approach is used traditionally for EEG studies. FFT was used to estimate

the power in each frequency band. The mean log power for each of the

bands and forty ANOVA's are summarized in Tables 1 and 2, respectively.

There is one ANOVA for each combination of the two conditions (eye,

workload), 5 frequency bands 'alpha, betal, beta2, delta, theta) and 4

electrode positions (Fz, Cz, Pz, Oz) . The dependent variable in each

ANOVA was the log power at a particular combination of the 5 bands and

four electrode positions. The analysis was done across sessions.

For the purposes of this study, the effect of the tasks on the

activity in the alpha band was of primarily interest for the ANOVA

technique. The remaining four bands were also analyzed and the results

can be obtained by reviewing Tables 1 thru 4.

The mean log power for each band and lead combinaticn for the eye

condition can be found in Table 1. Inspection of Table 1 shows that

overall, the effect of whether subject's eyes were opened or closed was

reflected in the difference of the log power in the alpha, beta2, and

theta bands.
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Table 1.
Mean Frequency Log Power Values for
Each Lead During Eye Conditions

Eye Condition (Open/Closed):
Fz Cz Pz Oz

Bands closed open diff closed open diff closed open diff closed open diff

alpha -0.812 -0.662 -0.130 1.552 1.175 0.377 1.307 1.088 0.219 1.395 1.146 0.259
betal -1.421 -1.322 -0.099 0.676 0.497 0.179 0.607 0.521 0.086 0.771 0.656 0.115
bta2 -1.573 -1.528 -0.045 0.478 0.190 0.280 0.436 0.284 0.152 0.604 0.412 0.192
delta 0.060 1.239 -1.179 0.172 0.170 0.025 1.722 1.722 0.000 1.831 1.870 0.C39
theta -0.605 0.213 -0.819 1.420 1.270 0.150 1.466 1.39l 0.075 1.675 1.588 0.-88

Counting Tasks (Counting/No-Counting) :
Fz Cz Pz Oz

Bands no cnt count dUO no cnt ount d:10 no cn- count diff no cnt count d4ff
alpha -0.745 -0.004 0.075 1.348 1.379 -0.032 1.181 1.214 -0.033 1.271 1.269 0.0l

oeta 1 -1.374 0.005 0.079 0.608 3.565 0.043 0.577 0.552 0.026 0.729 0.697 0.032
'a2 -1.546 -0.233 0.64 0.326 0.341 -0.015 0.343 0.377 -0.034 0.510 0.505 0.C5

delta 0.629 0.042 0.263 1.702 1.720 -0.018 1.697 1.747 -0.049 1.855 1.846 0.0C9
theta -0.187 -0.180 0.253 1.355 1.334 0.021 .413 .447 -0.036 1.573 1.690 -0.117

The ANOVA results in Table 2 show that the differences in the log

power for alpha for the Cz (p = 0.002), Pz (p = 0.032), and Oz (p =

0.017) electrode positions were significant at the 5% level of

confidence. The proportion of variance accounted for the main effect of

the eye condition can also be found in Table 2. For the significant

alpha band, (Cz, Pz, Oz) effects, the R2 were 0.20, 0.11, and 0.17

respectively. The Cz lead showed significance in all bands, except delta

for the eye tasks. Overall, the effect of eyes open or closed were

significant eleven out of the twenty analyses. Those effects were

distributed through the frequency bands and at all leads. However, R2

showed that only 18% of the variation was accounted for in all cases.
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Table 2.
ANOVA Results For Eye Condition

Eye Condition (Open/Closed):
F Statistics P Value R2

Bands Fz Cz Pz Oz Fz Cz Pz Oz Fz Cz Pz Oz
alpha 0.666 24.453 7.081 9.778 0.442 0.002 0.032 0.017 0.038 0.204 0.113 0.172
betal 0.814 15.968 5.285 4.897 0.397 0.005 0.055 0.063 0.034 0.077 0.017 0.037
beta2 0.175 24.265 6.457 11.256 0.689 0.002 0.039 0.012 0.005 0.104 0.029 0.062
delta 60.280 0.560 0.000 0.792 0.000 0.479 1.000 0.403 0.640 0.007 0.000 0.014
theta 31.003 32.753 2.387 5.584 0.001 0.001 0.166 0.050 0.558 0.182 0.043 0.040

Counting Tasks (Counting/No-counting):
F Statistics P Value R2

Bands Fz Cz Pz Oz Fz Cz Pz Oz Fz Cz Pz Oz
alpha 0.018 0.520 0.764 0.007 0.895 0.495 0.411 0.935 0.000 0.002 0.003 0.000
betal 0.038 6.360 C.286 3.168 0.850 0.039 0.609 0.118 0.000 C.004 0.002 0.003
ueta2 0.179 0.676 0.287 0.058 0.685 0.407 0.608 0.817 0.000 0.000 0.001 0.000
delta 0.20. 1.126 2.713 0.1C8 0.668 0.324 0.144 0.752 0.001 C.003 0.024 0.001
theta 0.042 0.780 1.132 7.862 0.844 0.406 0.323 0.026 0.000 0.004 0.010 0.071

Interaction:
F Statistics P Value R2

Bands Fz Cz Pz Oz Fz Cz Pz Oz Fz Cz Pz Oz
alpha ?.992 0.8:.2 C.166 3.382 0.026 0.398 0.696 0.109 0.005 Z.001 0.101 0.001
beta. 0.CO4 0.243 0.783 0.704 0.954 0.637 0.406 0.429 0.000 C.0^01 0.010 0.002
beta2 0.02: 0.158 0.755 0.666 0.889 0.702 0.414 0.441 0.000 0.001 0.009 0.002
delta 2.'117 0.083 1.160 0.284 0.189 C.782 0.317 0.611 0.009 C.000 0.014 0.002
theta 0,714 1.86C 1.598 0.035 0.426 0.215 0.247 0.857 0.002 0.09 0.017 0.000

The mean log power for each band and lead combination for the

counting task can be found in Table 1. The ANOVA results are given in

Table 2. Inspection of Table 2 shows that, the effect of counting versus

no counting was only significant for the differences in log power of

betal at the Cz lead and theta at Oz at the 5% level of confidence. By

inspecting Table 2 it can be seen that the only significant interaction

involving the alpha band was at the Fz position, p < 0.02. However, this

interaction accounted for less than 0.5% of the variation based on the

R2 for this effect. No interaction accounted for more than 2% of the

proportion of the variance.

The mean log power for each band and lead combination for the

workload conditions can be found in Table 3. The ANOVA results are given

in Table 4. Inspection of Table 4 shows that the effect of whether
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subjects were performing in the math processing or a display monitoring

condition was significant with respect to changes of the log power of

the alpha band. Alphas for the Cz, Pz, and Oz electrode positions were

significant at the p = 0.05 level or better. The effect of task was

widespread and seen on all frequency bands. In all, twelve of the 20

effects were statistically significant at the 5% level of confidence.

The log power of alpha at the Fz position was not significant. Betal was

significant at the 5% level of confidence at the Cz, Pz and Oz leads as

well. Beta2, delta and theta were significant at the Cz lead and all

bands were significant at the 5% level of confidence on the Oz lead

except theta.

Table 3.
Mean Frequency Power Values for

Each Lead During Workload Condition

Display Monitoring/Math Processing:
Fz Cz Pz Oz

Bands 0 W " f 1 '1ff D W dff M P diff
alpha -C.639 134 1 .6 1.cC 1.64 -014 0.977 10 66 -0,089 1..31 1.199 -0.069
tvta -1.26C -1.147 -C.113 0.470 0.554 -0.083 0.459 0.562 -0.102 0.651 0.758 -0.107
beta2 -0.145 -: .362 -C.087 0.098 0.115 -0.097 0.191 0.241 -0.050 C.352 0.437 -0.085
de'ta 1.135 1.423 -0.287 1.717 1.769 -0.052 1.721 1.753 -0.033 1.852 1.897 -0.045
theta 0.285 0.464 -1.790 1.338 1.329 0.0C9 1.415 1.407 0.008 1.627 1.648 -0.021

Level of Difficulty (High/Low):
Fz Cz Pz Oz

Bands high low d.ff high low dIff high low diff high low diff
alpha -0.606 -0.567 0.133 1.061 1.153 -0.092 0.991 1.052 -0.061 1.151 1.179 -0.027
bta 1 -1.237 -0.067 0.181 0.492 0.532 -0.040 0.488 0.533 -0.045 0.687 0.721 -0.034
beta2 -1.419 -0.027 C.361 0.153 0.140 0.013 0.224 0.207 0.017 0.390 0.398 -0.008
delta 1.229 -0.100 0.261 1.739 1.746 -0.007 1.739 1.734 0.005 1.872 1.877 -0.004
theta 0.363 -0.023 0.327 1.326 1.341 -0.015 1.402 1.420 -0.018 1.647 1.628 0.019

Inspection of Table 4 shows that overall, the effect of whether

subjects were performing at the high or low level of a particular

condition was significant for the Cz and Pz electrode positions at the p

- 0.05 level or better. Only four band/lead combinations were

signific.ant for the level of difficulty analysis. Those were alpha at Cz
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and Pz (p = 0.008, 0.006 respectively), betal at Cz (p = 0.006), and

theta at Pz (p = 0.010). However, the proportion of variance explained

by any of these effects was less than 6% in all cases.

Inspection of Table 4 reveals that the only significant

interaction involving the alpha band was at the Pz position, p < 0.025.

However, this interaction only accounted for less than 2% of the

variation based on the R2 for this effect as shown in Table 4. Theta was

significant at the Cz and Pz leads. Further inspection of Table 4

reveals that no interaction accounted for more than 2% of the variation.

Table 4.
ANOVA Results For Workload Condition

Display Monitoring/Math Processing:
F Statistics P Value R2

Bands Fz Cz Pz Oz Fz Cz Pz Oz Fz Cz Pz Oz
alpha 2.958 13.791 7.086 14.992 0.129 0.006 0.032 0.0061 0.021 :.072 0.063 0.030
beta' 4.486 10.654 21.224 31.821 0.072 0.029 0.025 0.00:. 0.056 :.026 0.049 0.057
beta2 3.301 5.523 2.563 7.469 0.112 0.014 0.153 0.029, 0.036 :.08 0.006 C.022
delta 18.08C 7.690 2.384 11.621 0.004 0.005 0.166 0.01" 1 0.067 :.035 0.017 C.026
:teta 9.486 0.076 0.059 0.951 0.108 0.028 0.815 0.3621 0.036 :.001 0.001 0.004

Level of Difficulty (High/Low):
F Statistics P Value R2

Bands Fz Cz Pz Oz Fz Cz Pz Oz Fz Cz Pz Oz
alpha 0.421 13.293 0.153 3.066 m0,53 0.008 0.006 0.124 0.003 Z.046 0.063 0.030
betal 2.011 15.359 0.153 3.698 0.199 0.006 0.502 0.096 0.020 .006 0.049 0.057
beta2 0.177 0.654 0.501 0.261 0.687 0.445 0.475 0.625 0.003 -.300 0.006 0.022
delta 0.615 0.403 0.572 0.032 0.459 0.546 0.276 0.862 0.008 0.001 0.017 0.026
theta 0.065 0.472 1.392 0.618 0,807 0.514 0.010 0.458 0.001 0.003 0.001 0.004

Interaction:
F Statistics P Value Ra

Bands Fz Cz Pz Oz Fz Cz Pz Oz Fz Cz Pz Oz
alpha 1.018 1.952 8.015 2.962 0,345 0.205 0.025 0.219 0.005 0.006 0.018 0.006
betal 0.065 1.259 2.519 0.012 0.806 0.299 0.157 0.915 0.000 0.301 0.001 0.000
beta2 0.010 0.189 1.766 0.002 C.921 0.677 0.226 0.965 0.000 0.000 0.003 0.000
delta 0.194 0.191 0.075 2.582 0.673 0.675 0.792 0.152 0.001 C.:31 0.000 0.014
theta 0.437 0.065 8.714 3.382 0.530 0.038 0.021 0.109 0.002 . 15 0.013 0.006

DISCRIMINANT ANALYSIS

Discriminant analysis was used to classify the eight tasks based on

the log power in the bands of the spectra. Two separate analyses were
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performed. The first used the log power from all frequency bands and the

second used only the alpha band log power as input. Within each of these

two general discriminant analyses, three different analyses were

performed. These analyses varied the cell size and whether the derived

disriminant function was used to discriminate novel stimuli.

Each discriminant function was developed using all eight conditions

as a set so that the results were similar to the output of the neural

net. For the first analysis, data from both experimental sessions were

used. One session from one subject was unavailable for analysis,

therefore, n = 15. Once a discriminant function was developed, the input

data were then used as the test set to evaluate the robustness of the

derived function. This analysis is most analogous to the training

versus training results discussed in the neural network performance

section. These results can be found in Table 5.

Table 5 is made up of six, two by two cells, one set for each

level of analysis (n = 15, n = 8, and n = 7). Entries in the cells

represent the percent correct classification of the conditions by the

discriminant function. Although all eight conditions were included in

the matrix, eye condition and workload have been broken out separately

in the presentation of the data to be consistent with the ANOVA design.

The margins of the cells represent the average percent classification

across the levels and types of tasks. The corner value is the overall

percent correct classification for the condition. Inspection of Table 5

shows that using all the available features of the spectra for n -15,

the discriminant function actually correctly classified all of the

tasks.

j
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Table 5.
Discriminant Analysis Table

Percent Correct Classification of Tasks Using 5 Bands, 4 Leads

ZYZ WORKLOAD
N 15

CLOSED OPEN cm MP

COUNT 100.00 100.00 :00.00 HIGH 100.00 100.00 100.00

1 1 1 1

NO COUNT 100.00 100.00 :ooo0 LOW 100.00 100.00 100.00
1 1 1 1

100.00 100.00 100.00 100.00 100.00 100.00

EYS N = 8 WORKLOAD

CLOSED OPEN cm MP

COUNT 87.50 100.00 93.75 HIGH 100.00 87.50 93.75

7 8 8 7

NO COUNT 87.50 100.00 93.75 LOW 100.00 100.00 100.00

7 8 8 8

87.50 lOO.OO 93.75 100.00 93.75 96.88

XZN 7 WORKLOAD

CLOSED OPEN Em 1P

COUNT 28.57 0.00 28.57 HIGH 28.57 28.57 28.57

2 0 2 2

NO COUNT 28.57 14.29 21.43 LO] 14.29 85.71 50.00

2 1 1 6

28.57 14.29 17.86 21.43 57.14 39.29
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The second discriminant analysis used only the data from session 1

to develop a discriminant function. Hence, only eight observations were

used. The discriminant function derived from session 1 data were then

used to predict session 1 data, as with the full set of data in the n -

15 analysis. The purpose of this was to evaluate how robust the derived

function from only half the data set was prior to testing novel stimuli.

Again, this analysis is most analogous to the training versus training

performed by the neural network. Table 5 shows details of the cell

performances. Using session I data (n = 8), correct classification

dropped to 93.75% overall for the eye condition, and 96.88% on the

workload tasks, but it was felt that performance was good enough tu

evaluate further testing on novel stimuli.

Correct classification of novel stimuli was 17.87% for the eye

condition and 39.29% for the workload condition. Chance correct

classification for the eight tasks would be 12.50%.

DISCRIMINANT ANALYSIS USING THE ALPHA BAND

Discriminant functions were also derived using only the alpha band.

When the discriminant function is based only on alpha, changes occur in

the ability to develop a discriminant function and the resulting

capability to predict novel stimuli. Table 6 shows results of the

discriminant analysis using only the alpha band.
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Table 6.
Discriminant Analysis Table

Percent Correct Classification of Tasks Using Alpha Band, 4 Leads

'YE WRLAN = 15 WORKLOAD

CLOSED OPEN DM MP

COUNT 33.33 13.33 23.33 HIGH 60.00 26.67 43.34

5 2 9 4

NO COUNT 86.67 33.33 60.00 IOIA 60.00 33.33 30.16

1 5 9 5

60.00 23.33 41.66 60.00 30.00 40.87

Y N = 8 WORKLOAD

CLOSED OPEN D IMP

COUNT 50.00 25.00 37.50 HIGH 62.50 50.00 56.25

4 2 5 4

NO COUNT 100.00 ?5.00 62.50 L0W 87.50 25.00 56.25

8 2 7 2

75.00 25.oo 50.00 75.00 37.50 56.25

EYE N = 7 WORKLOAD

CLOSED OPEN 1M H

COUNT 0.00 0.00 0.00 HIGH 28.57 28.57 28.57

0 0 2 2

NO COUNT 85.71 14.29 50.00 LOW 28.57 28.57 28.57

6 1 2 2

85.71 14.29 50.00 28.57 28.57 28.57
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When only the alpha band is used to derive these discriminant

functions, there is approximately a 50% reduction in the correct

classification of workload tasks overall. The capability of predicting

eye condition tasks, based on the derived function, for novel stimuli is

essentially unchanged overall. However, eye tasks classification based

on alpha was 0%, if the subjects were counting. But, if subjects' eyes

were closed and there was no counting, discrimination based on alpha

alone was very good (85.71%). These results are aligned with the arousal

literature findings in studies using frequency analysis techniques

referred to earlier in this study. Correct classification of these tasks

by chance is 12.5%.

Interpretation of the sensitivity of the spectral analysis of the

EEG is dependent on whether the subjects were performing the activity as

directed. Verification of activity for the eye condition was based on

subject report. In addition to subject report, mean time to respond

(math processing), mean response time (display monitoring), and error

rate were collected for the workload condition.

For all subjects, the math processing task, low difficulty level,

was performed with a mean accuracy of 98.05%, with a standard error in

the performance of 0.62%. The high level of that task had a mean

accuracy of 97.13%, and a standard error of 0.63%. The display

monitoring tasks were performed with a mean accuracy of 89.95%, with a

standard error of 3.53%, and 92.67%, standard error - 3.96%, for the low

and high levels respectively.
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For the math processing tasks mean time to respond was 1050 ms,

standard error = 194.8 ms for the low level and 2946 ms with a standard

error of 314.9 ms for the high level. The low difficulty level of

display monitoring had a response time of 3200 ms with a standard error

of 1240 ms , while the high level response time was 3460 ms with a

standard error of 480 ms.

NEURAL NETWORK

A back-propagated three layer perceptron was coded in "C" on a VAX.

Initial layers of the network were set at 800 x 100 x 8. Raw data files

were converted into separate neural network data files for training the

network and to establish weights between the input layer and the hidden

layer. Once these weights were established, the network was tested for

its ability to classify one-seconi intervals of EEG time histories

resulting from the eight tasks. Since this effort serves as an initial

attempt for evaluating a neural network as an analysis tool, the length

of the epoch T for spontaneous EEG to be analyzed was not well

understood. Clinical applications use as much as T = five or ten

seconds, whereas workload and psychophysiological applications may use

several milliseconds for analysis for evoked potential. For this study,

T - 1 second was chosen.

NEURAL NETWORK TAINING

Neural Network Training Samples. One hundred, one-second intervals

were randomly selected for each subject from each of the eight task time
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histories to serve as the neural network input for training. These

intervals were chosen such that they were as far into the task as to be

representative of the spontaneous response for that task. These samples

were randomly selected from the records, excluding time segments with

artifacts. Each one-second sample was represented by a 12-bit digital

string from each of the four leads sampled at a rate of 200 HZ; the

input vector was 1 x 800. Since the relationship of space-time patterns

of neural activity to antecedent or consequent events are not well

understood, a large dimensionality in the input vector insures that loss

of information is minimized. The 100 one-second samples were collected

randomly, without replacement, from the two trials for each task. That

is, half of the training set was from the first session and half from

the second session. The testing samples for the net were also 100, one-

second slices from the EEG time histories collected by the same method.

The net was then trained on the data by initiating training passes.

The network was set to perform not more that 2000 training passes of the

training files. Each sample was assigned the task number label based on

which task generated the signal. Every time a new sample signal from a

task was input, the network adjusted its weights based on the similarity

of the new sample signal with the previous sample signals having the

same label. During learning, the output of the network for a particular

input pattern is compared by its label to the desired output pattern

established by previous input patterns. The difference between these two

values propagates an error signal back through the network, iteratively.

A cutoff score was set to define the acceptable difference between the

actual and desired output. The error signal is filtered through the
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derivative of the sigmoid response of the processing units, and used to

generate changes in the interconnection weights between layers. Training

passes were made until the network reached the set number of passes, or

reached the set cutoff score, which ended the training.

If the set cutoff score is reached by the end of the training

passes, the net is said to have converged. Convergence essentially means

that a unique pattern of weights has been established between the input

layer and the hidden layer for each class of input patterns. In this

case, each task type is a class. These weighted connections create

patterns in the network's memory that can be used to classify either the

data that created those patterns or novel stimuli presentations of the

same signal type.

When trained, the net associated each sample with its task label,

learned during training passes. Classification was made by activating

one of the eight output nodes based on the test sample signal similarity

to a trained signal. That is, when a test sample signal was most like a

labeled sample of a trained signal, the appropriate output node is

assigned a value of 1. The decision on which node to assign 1 is based

on the weightings through the net. The remaining seven output nodes are

assigned values of zero.

HIDDEN LAYER SEARCH

The original configuration of the network did not provide

satisfactory performance. In fact, the network failed to converge at the

800 x 100 x 8 configuration. For this reason, a search was initiated to
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find an acceptable configuration to analyze the sets of novel stimuli

and provide results demonstrating neural network capability to

discriminate workload tasks based on the EEG signal. A systematic

approach was defined to vary four network variables - the hidden layer

size, alpha, beta, and the cutoff score . Alpha and beta are network

variables which control the rate of learning and forgetting through the

network connections. The cutoff score serves as the delta parameter.

100 Node Hidden Layer Performance. The original network

configuration was initiated by setting the hidden layer = 100 nodes,

alpha = 0.30, beta = 0.50, and the cutoff = 0.10. The 73 hours of CPU

time had elapsed at the time of run termination. At that point the

network had failed to converge.

At the time of termination, the actual value of the cutoff score

had begun asymptotic behavior at a value of 0.21. This value was reached

on the 350th training pass and continued to fluctuate for approximately

300 more passes. Based on this behavior, it was determined that a hidden

layer of 100 nodes did not provide enough connections between the input

layer and hidden layer to provide a unique pattern of weights. Further

training at this size hidden layer was abandoned.

Search Strategy. The search for a hidden layer size was bounded

between 100 and 400 nodes. Since the 100 node hidden layer did not

converge, it was determined to increase the size of the hidden layer. In

addition, based on general knowledge of neural network research, fairly

sizable increments were used to prevent fruitless activity. The upper

bounding at 400 was selected to prevent an over-generalization effect.
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Data from one subject were used to find the best network

performance. This data were selected based on an EEG time history that

had minimal noise. Once a network was found that showed potential, other

subjects' data were used to train and test that configuration. Table 7

shows the performance results of the various hidden layer trials.

Table 7.
Neural Network Hidden Layer Search

Performance

Pement Corect Cassification

Size Training Set Testing Set CPU Time

100 no convergence 0% 73 hours
250 72.25% 28.13% 7 hours
300 * 81.35% 30.00% 5 hours
400 80.12% 21.35% 9 hours

250 Node Hidden Layer. The first alternative configuration was set

at 250 nodes. This network converged in approximately seven hours of CPU

time. This was a significant improvement over the 100 layer

configuration. The net was tested using its own training set to evaluate

its accuracy. The overall correct classification of the tasks was

72.25%. Only two of the tasks reached an accuracy of 90% or better.

Although iis accuracy rate indicated that the net had not achieved a

good enough classification strategy, a testing set was run to evaluate

its power to classify novel stimuli. The result of the run was a 28.13%

correct classification of the novel stimuli. Chance correct

classification of would have been 12.5%. Although performance of twice

chance was not a major success, there was some indication that the



45

neural network was showing some potential. Based on this result, it was

determined to increase the hidden layer by only 50.

300 Node Hidden Layer. Performance of 81.35% correct classification

of the training set was reached in approximately 5 hours CPU time. The

testing set had a classification accuracy of 30% or almost three times

chance. Because of the relatively small CPU time the 300 node hidden

layer was selected to investigate the effect of variable manipulation of

the neural network variables alpha, beta, and cutoff. Although the

training vs. training was still not in the 90% range, performance was

somewhat improved. Due to the limited understanding of neural networks,

a larger node size might have degraded performance on novel stimuli

rather than improve it. A 400 node hidden layer was also investigated.

As can be seen in Table 7 this size hidden layer showed decreased

performance.

SEARCH STRATEGY FOR CONTROL VARIABLES

At the 300 node hidden layer, variables alpha, beta, and the cutoff

score were varied to determine their effect on correct classification.

These variables were manipulated independently. They were increased and

decreased by halving the distance between the original setting and 0.

That distance was then added or subtracted to the variable. A network

was then trained and tested at the new level. Table 8 shows performance

rates of the net due to the variable manipulations.
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Table S.
Neural Network Variable Search

TRAmmIG ?38T133

0.25 75.63 31.25
0.50 81.38 30.00

BETA 0.75 65.50 32.50
0.88* 90.63 36.25
1.00 76.63 30.63

0.15 69.38 30.63
ALPHA 0.30* 75.75 34.38

0.45 68.12 30.00

0.05* 90.63 36.25
CUTOFF 0.10 75.75 34.38

0.15 72.90 25.22
0.20 31.00 18.75

Beta was randomly selected as the first variable to change. Initial

setting was 0.50, therefore, 0.25 was added or subtracted. Performance

decreased with a beta of 0.25, so increases in beta were then evaluated.

Beta increased performance until it was set equal to 1.00. A further

halving of intervals between the best beta result at 0.75 and a reduced

performance level of 1.00 was made to determine if any setting above

0.75 improved the net. The best performance was achieved when beta was

set at 0.88.

Using the starter cutoff variable equal to 0.10, training vs.

training had a classification accuracy of 75% and training vs testing

achieved at 35% rate. At this point, the cutoff score was increased from

0.10 to 0.15 then to 0.20. Performance decreased for both training vs.

training and training vs. testing as the cutoff variable increased. The

variable was returned to the 0.10 level to investigate alpha effect and

later decreased to 0.05 for the final network evaluations.
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Alpha was initially set at 0.30. It was varied by a 0.15 increase

and decrease. Both changes had negative impact on performance. Alpha was

returned to its original setting of 0.30.

The final configuration of the network was at the hidden layer set

at 300 nodes, alpha at 0.30, beta decreased to 0.88 and the cutoff score

was set at 0.05. This configuration achieved the best training vs

training and training vs testing classification accuracy of all networks

evaluated at a rate of 90.63% and 36.25% respectively for the test

subject.

NEURAL NETWORK TESTING

Once a final configuration of the net was selected, 160 one-second

samples, 20 from each task, were used to test the network's capability

to classify the eight conditions. The percentage of correctly classified

tasks using novel stimuli determined the classification ability or

sensitivity of the neural network of the EEG signal features. After the

network was appropriately trained, a separate set of 160 one-second

samples were used to test the network's ability to classify each

treatment. Twenty samples were selected randomly, without replacement,

from the remaining segments of each of the eight tasks. Half of the

testing set was from the first session, and the other half from the

second session. Each of the eight output nodes, representing the eight

conditions, was assigned a "l" for match; 00 0 for no match, in a binary

coding strategy. That is, for a math processing task at high level, the
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network must activate the designated math processing-high node as 1, and

0 for all other nodes.

The 800 x 300 x 8 configuration was then used to train and test

subjects. As with the discriminant analysis, one subject was dropped

from the analysis due to noise in the signal. Results of the analysis

are shown in Table 9. The cell accuracy percentages are the mean

accuracies for all subjects. The confusion matrices on which these

values were based can be found in Appendix G. This analysis is most

analogous to the discriminant analyses using n = 15 and n = 7 as

discussed in the discriminant analysis performance section.
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Table 9.
Neural Network Analysis Table

TRAINING VERSUS TRAINING
EYE WORKLOAD

C1M OPEN DM NP

COUNT 86.17 72.83 79.50 HIGH 84.17 86.17 85.17

NO COUNT 89.50 92.50 91.00 LOW 93.17 92.67 92.92

87.83 82.66 85.24 88.67 89.42 89.04

TRAINING VERSUS TESTING
EYE WORKLOAD

CLOS OPEN EH

COUNT 31.67 37.30 34.47 HIGH 32.50 34.17 33.33

NO COUNT 30.83 38.33 34.58 LM 33.33 35.83 34.60

31.25 37.81 34.53 32.90 35.00 33.95

The training samples were used to develop the weighting of the

connections between the input layers, hidden layer, and output layer.

Recall that the output layer represented each of the eight conditions.

For comparison purposes, this weighting can be thought of as analogous

to developing a discriminant function. Once the training passes were

through, the same set of data used to train the network was used to test

A.
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its sensitivity to the tasks. As with the discriminant analysis, a

confusion matrix was built to map actual tasks with guessed tasks. This

enabled the identification of the percent correct classification along

the main diagonal. The percent correct classification was then collapsed

over all subjects into two by two cells. The resulting two by two cells

for the overall performance across subjects for eye tasks and workload

tasks are shown in Table 9. These results can be compared with the

discriminant analysis results.

Inspection of Table 9 shows that using all the available features

of the EEG time histories, the correctly classified the eye condition

tasks 85.24% of the time. Workload conditions had a slightly better

recognition at 89.04%.

Training versus Testing. When novel stimuli was presented to the

trained net, performance dramatically decreased to an overall level of

34.24%. The net was fairly consistent in its ability to classify both

eye condition tasks and workload condition tasks at a rate of 34.53% at

33.95%, respectively. These results can be compared to the performance

differences of the discriminant analysis, where the correct

classification of novel stimuli was 39% for workload condition tasks,

and only 18% for eye condition tasks.

Within the eyes closed, no-counting condition,the network

performed at the lowest recognition rate of 30.83%. But, the variability

of performance across all tasks was small. Whereas, in the discriminant

analysis, eyes open with counting had no correct classifications and the

eyes-closed, no-counting, task had the 100% percent correct
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classification in the alpha band only discriminant analysis on the test

set.

Workload tasks were classified with an overall accuracy of 33.95%.

Display monitoring was classified with the lowest rate, 32.50% and math

processing, low, was classified with the highest accuracy (35.83%).

Overall classification using neural network of these tasks was fairly

consistent overall with the discriminant analysis results at 33.95%.



IV. CONCLUSIO

Techniques to measure and classify mental workload conditions and

levels in real time are needed by Air Force programs developing decision

aiding systems such as the Pilot's Associate. Monitoring and analyzing

physiological parameters can provide information about the pilot's

mental workload state to those systems. By monitoring a continuous

signal such as the EEG and using this physiological response to mental

effort imposed by a task, the system could infer the level of mental

workload from the aspect of the physiological response to effort imposed

by a task. However, current research does not provide a reliable method

for systems such as Pilot's Associate to use to interpret EEG signals in

terms of their relationships to mental workload tasks or levels. In an

attempt to provide a reliable method for classifying EEG resulting from

arousal and mental workload tasks, this study investigated the analysis

capability of an artificial neural network.

The use of neural network analysis is more consistent with

Freeman's (1988) hypotheses of brain functiona. He suggested that what

has been previously relegated to noise in the EEG may, in fact, be a

reflection of the dynamically distributed activity characterized by a

mean field intensity. He further argued that this activity reflects the

integration mode of the brain and that these characteristics are

nonlinear in natiire. This information may be lost in transformation from

the time to frequency domain. Based on this hypothesis of nonlinearity,

it was hoped that neural networks might provide a better overall

52
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sensitivity since the algorithms used in neural networks make no

assumptions of linearity. Also, in contrast to the current practice of

FFT analysis, which loses information during the transformation of the

EEG signal into the frequency domain, the full data features from the

time series EEG traces could be used for the analysis.

In order to completely evaluate the neural network's capability,

it was necessary to first analyze the FFT sensitivity with respect to

the information it could provide about the mental workload conditions.

The results of the statistical analysis of spectral features of the EEG

traces in this study were fairly consistent with other studies which

have used that technique (Gopher and Donchin, 1986; O'Donnell and

Eggemeier, 1986). That is, the spectral features analyzed in this study

were sensitive to distinct changes in workload between tasks, but not to

levels of workload within a particular task. Alpha was noted to change

with eye condition. The frontal, midline electrode, which is subject to

facial and eye movement during the task, showed less sensitivity to

alpha changes. When subjects counted, the desynchronization of the alpha

band became apparent. The log power for alpha was no longer significant

at any position. In fact, alpha changes, during counting tasks,

accounted for none of the variability at the Fz and Oz positions. By

contrast, it accounts for 11% at Pz, 20% at Cz, and 17% at Pz during eye

closed, no-counting tasks. With respect to the value of analyzing the

spectral features of the workload tasks (math processing and display

monitoring), the difference in alpha log power was significant at Cz and

Pz. However, the amount of variance accounted for in this case was only

5% and 6%. Task difficulty was not found to be significant (p - 0.20) at
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the 5% level of confidence. Using the ANOVA results one can determine if

a lead was significant for a particular task, but a macro level

interpretation or classification of tasks is not possible. Therefore, it

may be concluded that analysis of the spectral features provides little

information for designers to use for classification of workload states

as would be necessary in a resource modelling module for the Pilot's

Associate.

Although discriminant analysis of the log power is rarely used in

the psychophysiological paradigm to analyze the EEG, discriminate

analyses were applied to the log power values in this study and proved

useful in categorizing workload activity. The advantage of developing a

taxonomy of workload activity based on spectral features is that direct

interpretation of the signal feature with respect to cognitive activity

may not be necessary. Merely grouping EEG by task may have some value

for application. The performance on the split data discrimination using

all bands at all leads was 93.75% for the eye condition and 96.88% for

the workload condition. This result must be met with some caution due to

the tendency for a function to overgeneralize based on small sample

size. Discriminability of the tasks was only 17.87% accuracy for eye

condition and 43.34% for workload when the alpha band was used by

itself. It can be inferred from this reduction that, although alpha band

information has been used extensively in EEG research paradigms, the

other bands significantly contribute to the ability to classify tasks.

In this study the use of the discriminant analysis accomplished two

things. First, it overlayed a multivariate clustering technique allowing

categorization of tasks based on their spectral features. Second, it
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provided a way of more closely evaluating the sensitivity of the neural

network.

The neural network configuration used in this study performed

about the same or slightly better than the discriminant analysis using

the spectral features. The percent correct classification by the neural

network was 34.24% for novel stimuli over all conditions. Discriminant

analysis of the spectral features provided an overall accuracy of 28.58%

using all bands at all leads. It should also be noted that the

performance level of the network was fairly consistent across conditions

and between levels of difficulty within conditions. The spectral

features were less sensitive between the difficulty levels of the tasks.

While the neural network's sensitivity is not remarkable, considering

the variability of the signals even within a subject, the findings are

encouraging.

In summary, the neural network's performance was at least as good

at classifying tasks as analysis using spectral features. But the

judgement of whether or not they will provide a better analysis tool for

EEG could not be made by the results of this study. A bounded,

exhaustive search of combinations of the size of the hidden layer, and

set values for the learning and forgetting parameters used in this study

may provide better performance.

I



APPENDIX A

Subject Consent Form

SUBJECT CONSENT FORM

You are invited to participate in a study testing the usefulness of

an artificial neural network as an analysis tool for EEG decoding. If

you decide to participate, we will take measurements from your on-going

brainwave activity during tasks. The skin on the scalp will be mildly

abraded with an alcohol-soaked gauze pad and electrodes will be applied

to the cleansed areas so that your brainwaves can be recorded.

You will be asked to perform tasks displayed on a TV screen. These

tasks will be explained in more detail. All tasks have been used in

previous research. You will be asked to perform wearing the electrodes.

These are not cumbersome and will in no way interfere with your

performance.

We will schedule a number of one to one and one half hour sessions

for you over the next 30 days. The sequence of sessions will be

scheduled according to your availability. You will have opportunities to

take breaks as needed. If you experience eye strain during a session, we

recormnend that you look around the room and focus on different objects.

If you feel yourself getting very bored or tired, please feel free to

take a break. Please let us know if there is something wrong with the

experiment. We are open to suggestions.
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Your cooperation and motivated performance are essential to us.

Therefore, we will be happy to answer any questions, so feel free to ask

questions at any time. Captain Gretchen Lizza will be available to

answer any of your questions. She may be reached at 429-5892. Also, Dr.

Herb Colle, Dept. of Psychology may be consulted as well. His number is

873-6921.

Data collected in this study will be treated in such a way as to

protect your privacy. Data will be published in scientific journals

without identifying individual subjects. The general results of this

study will be available to you upon request.

No alternative means exist to obtain the required information and

data that this experimental design. You should incur no personal risk as

a result of your participation. Your are free to withdraw from this

experiment at any time. The experiment will last for a number of

sessions, so please tell us during your first few sessions if you do not

wish to complete the study.

volunteer's initials



APPENDIX B
Neural Network Information

BACKPROPOGATION ALGORITHMI

The back-propagation training algorithm is an iterative gradient

algorithm designed to minimize the mean square error between the actual

output of a multilayer feed-forward perceptron and the desired output.

It requires continuous differentiable non-linearities. Essentially the

algorithm has four steps. It sets all weights and node offsets to small

random values. Once a continuous valued input vector is presented and

desired outputs are specified, the network can be used as a classifier.

All desired outputs are typically set to zero except for that

corresponding to the class of the input which is to 1. The input could

be new on each trial or samples from a training set could be presented

cyclically until weights stabilize. A sigmoid nonlinearity is used to

calculate outputs. The weights are then adapted using a recursive

algorithm starting at the output nodes and working back to the first

hidden layer by the equation :

wij(t+l) = wij(t) = ndi xj

In this equation wij(t) is the weight from hidden node or from an

input to node J at time t, xj is either the output of node i or is an

input, n is a gain term, and di is an error term for node J. If node j

is an output node, then
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di - y(l - yi) (di - yj)

where di is the desired output of node j and ui is the actual output. If

node J is an internal hidden node, then

di = xi(l - xi) dk wjk

where k is over all nodes in the layers above nodej. Internal node

thresholds are adapted in a similar manner by assuming they are

connection weights on links from auxiliary constant-valued inputs.

Convergence is sometimes faster if a momentum term is added and weight

changes are smoothed.



APPflDIX C.
ANOVA Source Tables

Tble C1.

Eye Condition ANOVA

For performance dependent variables and Alpha band variation:

SOURCE SS DF HS r

COUNTING (C) SS(C) c-1 SS(C) MS(C)
1 DF(C) MS(SxT)

EYE COND. (E) SS(E) e-1 SS(E) MS(E)

1 DF(E) MS(SxT)

SUBJECTS (S) SS(S) S-i SS(S)

7 DF(S)

(CxE) SS(CxE) (c-i) (e-1) SS(CxE) MS(CxE)

1 DF(CxE) MS(SxT)

(ExS) SS(ExS) (e-i) (s-i) SS(ExS)
7 DF(ExS)

(CxS) SS(CxS) (c-1) (s-i) SS(CxS)
7 DF(CxS)

(CxSXE) SS(CxExS) (c-i) (e-i) SxS(CxExS)
(s-i) DF(CxExS)

7

(S x Treatment SS(ExS)+SS(CxS) SS(SxT))
+SS(CxExS) (21) 21
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Table C2.
Workload Condition ANOVA

For performance dependent variables and Alpha band variation:

SOUC 88 Dr Ms 7

CTS TASK (T) SS(T) t-i SS(T) MS(T)

1 DF(T) MS(TRxS)

DIFFICULTY (D) SS(D) d-1 SS(D) MS(D)

1 DF(D) MS(TRxS)

SUBJECTS (S) SS(S) s-i SS(S)
7 DF(S)

MTD) 55 (TxD) (t -1) (d- 1) 55 (TxD) MS (TxD)
1 DF(TxD) MS(TRxS)

(DxS) SS(ExS) (d-1) (s-i) SS(DxS)
7 DF(DxS)

(TxS) SS(CxS) (t-1) (s-i) SS(TS)
7 DF(TxS)

(TxDxS) SS(TxDxS) (t-1) (d-1) SS(TxDxS)
(s-i) DF(TxDxS)

7

[S x Treatment SS(TxS)+SS(DxS) SS(TRxS))
+SS(DxTxS) (21) 21



APPENDIX D
Latin Squares Design

Subject First Trial Second Trial
1 2 8 4 5 1 7 3 6 1 8 6 5 3 4 2 7
2 1 7 3 6 2 8 4 5 2 7 5 6 4 3 1 8
3 6 4 1 8 3 5 7 2 3 4 2 8 7 1 6 5
4 3 5 2 4 4 6 1 8 4 5 8 7 1 2 3 6
5 8 2 5 7 7 1 6 3 7 2 3 4 6 5 8 1
6 7 1 6 3 8 2 5 4 8 1 4 3 5 6 7 2
7 4 6 8 1 5 3 2 7 5 6 7 1 2 8 4 3
8 5 3 7 2 6 4 8 1 6 3 1 2 8 7 5 4

9 4 3 8 2 5 5 1 7 5 3 7 2 1 8 4 6
10 1 2 3 4 7 7 5 6 7 2 6 4 5 3 1 8

11 3 4 7 1 6 6 2 8 6 4 8 1 2 7 3 5
12 2 1 4 3 8 8 6 5 8 1 5 3 6 4 2 7
13 8 7 6 5 2 2 4 3 2 7 3 5 4 6 8 1
14 7 8 5 6 1 1 3 4 1 8 4 6 3 5 7 2
15 5 6 1 7 4 4 8 2 4 6 2 7 8 1 5 3

16 6 5 2 8 3 3 7 1 3 5 1 8 7 2 6 4

Key:
I = no counting/eyes open
2 = no counting/eyes closed
3 = counting/eyes open
4 - counting/eyes closed
5 = math task/low workload
6 - math task/high workload
7 = probability monitoring/low workload
8 = probability monitoring/high workload
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APPENDIX 3
Digitization Information

DIGITIZATION

The analog records were digitized by the Neurophysiological

Workload Test Battery (NTWB) computer. EEG signals are continuous

variations of potential as a function of time. In order to digitize, the

random variable must have only one set of discrete values at a set of

discrete time instances. A 12 bit ensemble was used initially for input

to the FFT analysis and the neural network. Lopes da Silva (1976) and

Steineberg and Paine (1964) have found that most EEG analysis can be

performed using 9 to 12 bits representing 512 to 4096 amplitude levels.

The sampling interval was 100 HZ. This rate is more than two times

the Nyquist frequency (for this data a sampling rate of 60 HZ would be

necessary to reconstitute the sample with fidelity).
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APPENDIX 7
Discriminant Analysis Confusion Matrices

Table 11.
Discriminant Analysis Using Alpha Band/4 Leads (N = 15)

EC/C EC/NC EO/C EO/NC DM/H DM/_ MP/H MP/L
EC/C 5 7 1 0 1 0 1 0

33.33% 46.67%, 6.67% 0.00% 6.67% 0.00% 6.67% 0.00%
EC/NC 1 13 0 1 0 0 0 0

6.67% 86.67% 0.00%7o 6.67% 0.00% 0.00% 0.00% 0.00%
EO/C 0 0 2 4 1 3 1 4

0.00% 0.00% 13.33% 26.67% 6.67% 20.00% 6.67% 26.67%
EO/NC 0 0 1 5 1 6 1 1

0.00% 0.00% 6.67% 33.33% 6.67% 40.00% 6.67% 6.67%
DM/H 0 1 0 2 9 2 0 1

0.000 6.67% 0.00% 13.33% 60.00% 13.33% 0.00% 6.67%
DM/L 0 0 1 0 2 9 0 3

0.0 C/o 0.00% 6.67% 0.00% 13.33% 60.00% 0.00% 20.00%
MP/H 0 0 0 0 4 2 4 5

0.00% 0.00% 0.00% 0.00% 26.67% 13.33% 26.67% 33.33%
MP/h 0 2 0 1 3 2 2 5

1 0.00% 13.33% 0.00% 6.67% 20.00% 13.33% 13.33% 33.33%
TOTAL 6 23 5 13 21 24 9 19

10.71% 41.07% 8.93% 23.21% 37.50% 42.86% 16.07% 33.93%

EC - Eye8 Closed C - Counting
EO - Eyes Open NC - Not Counting
DM - Display Monitoring H - High
MP - Mat. Processing L - Low
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Table 72.
Discriminant Analysis Using 4 Bands/4 Leads (N - 15)

EC/C EC/NC EO/C EOMNC DM/H DM/L MP/H MPA.

EC/C 15 0 0 0 0 0 0 0
100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

EC/NC 0 15 0 0 0 0 0 0
0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

EO/C 0 0 15 0 0 0 0 0
0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00%

EO/NC 0 0 0 15 0 0 0 0
0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00%

DM/H 0 0 0 0 15 0 0 0
0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00%

DM/L 0 0 0 0 0 15 0 0
0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00%

MP/H 0 0 0 0 0 0 15 0
0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00%

MP/L 0 0 0 0 0 0 0 15
0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00%

TOTAL 15 15 15 15 15 15 15 15

26.79% 26.79% 26.79% 26.79% 26.79% 26.79% 26.79% 26.79%

EC - Eyes Closed C - Counting
EO - Eyes Open NC - Not Counting
DM - Display Monitoring H - High
MP - Math Processing L - Low
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Table r4.
Discriminant Analysis Using 4 Bands/4 Leads (N - 8)

EC/C EC/NC EO/C EO/NC DM/H DMAL MP/H MP/L
ECIC 7 0 0 0 0 1 0 0

87.50% 0.00% 0.00% 0.00% 0.00% 12.50% 0.00% 0.00%
EC/NC 0 7 0 0 0 0 1 0

0.00% 87.50% 0.00% 0,00% 0.00% 0.00% 12.50% 0.00%
EO/C 0 0 a 0 0 0 0 0

0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00%
EO/NC 0 0 0 8 0 0 0 0

0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00%
DM/H 0 0 0 0 8 0 0 0

0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00%
DM/L 0 0 0 0 0 8 0 0

0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00%
MP/H 0 0 0 0 0 1 7 0

0.00% 0.00/ 0.00% 0.00% 0.00% 12-50% 87.50% 0.00%
MP/L 0 0 0 0 0 0 0 8

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00%
TOTAL 7 7 8 8 8 10 8 8

12.50% 12.50% 14.29% 14.29% 14.29% 17.86% 14,29% 14.29%

EC - Eyes Closed C - Counting
EO - Eyes Open NC - Not Counting
DM - Display Monitoring H - High
MP - Math Processing L - Low
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Table 75.
Discriminant Analysis Using Alpha Band/4 Leads (N - 7)

EC/C EC/NC EO/C EO/NC DM/H DM/L MP/H MP/L
ECIC 0 6 0 0 0 0 1 0

0.00% 85.71% 0.00% 0.00% 0.00% 0.00% 14.29% 0.00%
EC/NC 0 6 0 0 1 0 0 0

0.00% 85.71% 0.00% 0.00% 14.29% 0.00% 0.00% 0.00%
EO/C 1 0 0 1 1 0 2 2

14.29% 0.00% 0.00% 14.29% 14.29% 0.00% 28.57% 28.57%
EO/NC 0 1 0 1 1 2 0 2

0.00% 14.29% 0.00% 14.29% 14.29% 28.57% 0.00% 28.57%
DM/H 0 0 0 2 2 1 1 1

0.00% 0.00% 0.00% 28.57% 28.57% 14.29% 14.29% 14.29%
DM/L 1 0 1 0 0 2 2 1

14.29% 0.00% 14.29% 0.00% 0.00% 28.57% 28.57% 14.29%
MP/H 0 0 0 0 0 1 2 4

0.00% 0.00% 0.00% 0.00/ 0.00% 14.29% 28.57% 57.14%
MP/L 0 1 0 1 1 1 1 2

0.00% 14.29% 0.00% 14.29% 14.29% 14.29% 14.29% 28.57%
TOTAL 2 14 1 5 6 7 9 12

3.57% 25.00% 1.79% 8.93% 10.71% 12.50% 16.07% 21.43%

EC - Eyes Closed C - Counting
EO - Eyes Open NC - Not Counting
DM - Display Monitoring H - High
MP - Math Processing L - Low
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Table V6.
Discriminant Analysis Using 4 Bands/4 Leads (N - 7)

EC/C EC/NC EOIC EO/NC DM/H DM/L MPH MP/L
EC/C 2 3 0 1 0 0 0 1

28.57% 42.86% 0.00% 1429% 0.00% 0.00% 0.00% 14,29%
EC/NC 1 2 0 0 1 0 1 2

14.29% 28.57% 0.00% 0.00% 14.29% 0.00% 14.29% 28.57%
EO/C 0 0 0 0 1 0 0 6

0.00% 0.00% 0.00% 0.00% 14.29% 0.00% 0.00% 85.71%
EO/NC 0 0 0 1 1 1 1 3

0.00% 0.00% 0.00% 14.29% 14.29% 14.29% 14.29% 42.86%
DM/H 1 0 0 2 2 1 0 1

14.29% 0.00% 0.00% 28.57% 28.57% 14.29% 0.00% 14.29%
DM/L 0 0 0 1 1 1 1 3

0.00% 0.00% 0.00% 14.29% 14.29% 14.29% 14.29% 42.86%
MP/H 0 0 0 1 C 1 2 3

0.00% 0.00% 0.00% 14.29% 0.00% 14.29% 28.57% 42.86%
MP/L 0 0 0 1 0 0 0 6

0.00% 0.00 0  0.00% 14.29% 0.00% 0.00% 0.00% 85.71%

TOTAL 4 5 0 7 6 4 5 25
7.14% 8.93% 0.00% 12.50% 10.71% 7.14% 8.93% 44.64%

EC - Eyes Closed C - Counting
EO - Eyes Open NC - Not Counting
DM - Display Monitoring H - High
MP - Math Processing L - Low



APPENDIX G
Neural Network Analysis Confusion Matrices

Table G1.
Neural Network - Training Set Analysis (Subject 1)

EC/C ECUNC EO/C EO/NC DMIH DMIL MPH MP

EC/C 86 4 3 0 1 1 1 4
EC/NC 1 89 5 0 0 1 0 4

EO/C 0 0 99 0 0 0 0 1
EO/NC 0 1 10 78 0 3 3 5

DM/H 0 1 9 0 88 0 0 2
DM/L 0 1 4 0 0 93 0 2
MP/H 0 0 3 0 0 0 97 0
MP/L 0 0 4 0 1 0 0 95

Composite Accuracy (%): 90.63

EC - Eyes Closed C - Counting
EO - Eyes Open NC - Not Counting
DM - Display Monitoring H - High
MP - Math Processing L - Low

Table G2.
Neural Network - Testing Set Analysis (Subject 1)

ECIC EC/NC EO/C EO/NC DM/H DM/L MP/H MP/h
EC/C 45 15 5 0 5 0 10 20

EC/NC 0 35 10 10 5 20 5 15
EO/C 15 10 35 15 15 0 5 5

EO/NC 20 5 5 30 5 15 10 10
DM/H 5 10 10 10 40 5 10 10
DM/. 20 10 10 10 5 25 5 15
MP/H 5 10 15 0 0 5 45 20
MP/L 0 15 15 15 10 0 10 35

Composite Accuracy (%): 36.25

EC - Eyes Closed C - Counting
EO - Eyes Open NC - Not Counting
DM - Display Monitoring H - High
MP - Math Processing L - Low

Nora. Rows indicate the actual experimental condition; columns indicate the condition
output by the neural network
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Table G3.
Neural Network - Training Set Analysis (Subject 2)

EC/C EC/NC EO/C EO/NC DMJH DM/L MP/ MP/L

EC/C 49 10 0 5 15 10 1 10
EC/NC 0 95 0 0 5 0 0 0

EO/C 0 9 44 5 21 10 6 5

EO/NC 0 0 0 99 0 0 1 0
DM/H 0 0 0 1 98 1 0 0
DM/. 0 0 0 1 3 96 0 0

MP/H 0 1 0 2 4 4 88 1
MP/L 0 0 0 1 0 2 0 97

Composite Accuracy (%): 83.25

EC - Eyes Closed C - Counting
EO - Eyes Open NC - Not Counting
DM - Display Monitoring H - High
MP - Math Processing L - Low

Table G4.
Neural Network - Testing Set Analysis (Subject 2)

EC/C EC/NC EO/C EO/NC DM/H DMIt MP/H MPAL

EC/C 10 15 5 20 15 5 15 15
EC/NC 5 40 10 5 30 5 0 10

EO/C 5 20 15 10 30 10 5 5

EO/NC 5 10 0 35 0 15 15 15
DMH 5 if% 0 10 40 10 15 10
DM/. 5 10 15 0 25 40 0 5
MP/H 5 10 5 10 25 5 25 15
MP/. 5 10 5 0 30 10 0 40

Composite Accuracy (%): 33.75

EC - Eyes Closed C - Counting
EO - Eyes Open NC - Not Counting
DM - Display Monitoring H - High
MP - Math Processing L - Low
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Table G5.
Neural Network - Training Set Analysis (Subject 3)

EC/C EC/NC EO/C EO/NC DM/H DM/L MPM/ MP/L
EC/C 49 2 12 16 10 4 3 4

EC/NC 0 87 5 3 5 0 0 0
EO/C 0 0 98 1 1 0 0 0

EO/NC 1 0 0 96 2 1 0 0
DM/H 0 0 2 3 95 0 0 0
DM/L 0 0 2 3 5 88 0 2
MP/H 1 0 13 6 12 1 64 3
MP/. 0 0 5 5 10 3 0 77

Composite Accuracy (%): 81.75

EC - Eyes Closed C - Counting
EO - Eyes Open NC - Not Counting
DM - Display Monitoring H - High
MP - Math Processing L - Low

Table G6.
Neural Network - Testing Set Analysis (Subjec: 3)

EChC ECfNC EO/C EO/NC DM/H DM/L MP/H MPI.

EC/C 25 10 10 30 5 5 0 15
EC/NC 15 20 15 15 15 0 10 10

EO/C 5 5 50 10 20 10 0 0
EO/NC 10 0 20 40 15 5 0 10
DM/H 0 10 20 15 30 5 15 5
DM1 5 15 0 20 0 30 15 15
MP/H 0 10 25 25 20 5 10 5
MPh 10 30 5 10 5 10 5 25

Composite Accuracy (%): 31.8

EC - Eyes Closed C - Counting
EO - Eyes Open NC - Not Counting
DM - Display Monitoring H - High
MP - Math Processing L - Low
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Table G7.
Neural Network - Training Set Analysis (Subject 4)

EC/C EC/NC EO/C EO/NC DM/H DML MP/H MP/L
ECIC 47 4 10 18 10 4 3 4

EC/NC 0 89 3 3 5 0 0 0
EO/C 0 1 97 1 1 0 0 0

EO/NC 1 0 0 93 4 1 1 0
DM/H 2 0 0 3 94 1 0 0
DMA- 0 0 2 2 6 87 1 2
MP1 1 0 12 7 10 3 60 7
MP/L 0 0 4 6 9 4 0 77

Composite Accuracy (%): 80.50

EC - Eyes Closed C = Counting
EO - Eyes Open NC - Not Counting
DM - Display Monitoring H - High
MP - Math Processing L - Low

Table GS.

Neural Network - Testing Set Analysis (Subject 4)

EC/C EC/NC EO/C EONC DM/H DM/A MPJ. MP/L
EC/C 35 0 10 25 10 5 0 15

EC/NC is 0 10 10 15 20 15 15
Er%'C 50 10 20 10 0 0 5 5

EO/NC 10 0 20 40 10 0 5 15
DM/H 30 5 15 5 15 20 10 0
DM/L 20 0 15 5 30 40 15 0
MPH 5 10 5 20 0 10 25 25
MP/L 25 5 10 5 5 10 10 30

Composite Accuracy (%): 33.75

EC - Eyes Closed C - Counting
EO - Eyes Open NC - Not Counting
DM - Display Monitoring H - High
MP - Math Processing L - Low
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Tablu G9.
Neural Network - Training Set Analysis (Subject 5)

EC/C EC/NC EO/C EO/NC DM/H DM1 MP/H MPA.

EC/C 63 3 10 1 4 0 8 11

EC/NC 0 85 4 0 0 0 7 4

EO/C 0 1 98 0 0 0 1 0

EO/NC 0 0 2 93 0 0 4 1

DM/H 0 0 3 0 89 0 7 1
DM/L 0 0 4 0 1 83 8 4

MP/H 0 1 0 0 0 0 99 0

MP/1 0 0 1 0 0 0 0 99

Composite Accuracy (%): 88.63

EC - Eyes Closed C - Counting
EO - Eyes Open NC - Not Counting
DM - Display Monitoring H - High
MP - Math Processing L - Low

Table G10.

Neural Network - Testing Set Analysis (Subject 5)

EC/C EC/NC EO/C EO/NC DM/H DM/L MP/H MP/1

EC/C 35 10 15 15 10 0 5 10

EC/NC 0 30 5 25 10 5 10 15

EO/C 0 10 35 5 10 25 10 5

EO/NC 0 5 10 25 5 10 20 25
DMIH 0 10 0 10 55 10 15 0

DM/_ 5 15 15 15 0 30 10 10

MP/H 5 5 5 5 15 0 45 20

MP/L 15 0 10 10 15 5 5 40

Composite Accuracy (%): 36.88

EC - Eyes Closed C - Counting
EO - Eyes Open NC - Not Counting
DM - Display Monitoring H - High
MP - Math Processing L - Low

4 ________
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Table G1l.

Neural Network - Training Set Analysis (Subject 6)

EC/C EC/NC EO/C EO/NC DM/H DM/L MP/H MP/L
EC/C 97 0 0 1 0 1 0 1

EC/NC 6 85 0 1 3 3 0 2
EO/C 8 0 68 3 4 5 1 11

EO/NC 1 0 0 95 3 1 0 0
DM/H 2 0 0 0 94 1 0 3
DM/L 5 0 0 0 1 93 0 1
MP/H 8 0 0 0 1 1 3 83
MP/L 4 0 0 1 2 1 0 92

Composite Accuracy (%): 88.38

EC - Eyes Closed C - Counting
EO - Eyes Open NC - Not Counting
DM - Display Monitoring H - High
MP - Math Processing L - Low

Table G12.
Neural Network - Testing Set Analysis (Subject 6)

EC/C EC/NC EO/C EO/NC OM/H DMAL MP/H MP/L

EC/C 45 0 10 15 5 15 0 10
EC/NC 5 45 0 10 10 10 5 15
EO/C 25 15 25 10 5 0 10 10

EO/NC 15 10 5 45 0 5 5 15
DM/H 15 15 15 0 30 5 5 15

DMI/ 5 0 0 35 5 30 5 20
MP/H 20 5 5 0 5 5 40 20
MP/. 5 5 5 20 15 10 10 30

Composite Accuracy (%): 36.88

EC - Eyes Closed C - Counting
EO - Eyes Open NC - Not Counting
DM - Display Monitoring H - High
MP - Math Processing L - Low
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Table G13.
Neural Network - Training Set Analysis (Subject 7)

EC/C EC/NC EO/C EO/NC DM/H DM/L MP/H MPA.
EC/C 93 0 1 1 0 0 1 4

EC/NC 3 76 6 3 3 0 3 6
EO/C 0 0 98 0 0 0 1 1

EO/NC 0 0 1 98 1 0 0 0
DM/H 3 0 4 0 91 1 1 0
DMiL 1 0 5 3 0 84 3 4
MP/H 1 0 1 0 0 0 96 2
MP/L 0 1 2 1 0 0 0 96

Composite Accuracy (%): 91.50

EC - Eyes Closed C - Counting
EO - Eyes Open NC - Not Counting
DM - Display Monitoring H - High
MP - Math Processing L - Low

Table G14.
Neural Network - Testing Set Analysis (Subject 7)

EC/C EC/NC EO/C EO/NC DM/H DM/L MP/H MP/L
EC/C 40 0 0 10 5 5 25 15

EC/NC 5 20 15 10 25 5 15 5
EO/C 20 0 35 10 20 5 5 5

EO/NC 25 15 5 25 15 0 15 0
DM/H 20 5 5 10 35 15 5 5
DM/L 10 10 15 5 5 45 10 0
MP/H 5 5 5 10 5 10 40 20
MP/L 5 10 15 20 0 0 5 45

Composite Accuracy (%): 36.25

EC - Eyes Closed C - Counting
EO - Eyes Open NC - Not Counting
DM - Display Monitoring H - High
MP - Math Processing L - Low
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Table G15.
Neural Network - Training Set Analysis (Subject 8)

EC/C EC/NC EO/C EO/NC DM/H DM/L MP/H MP/L
EC/C 97 0 1 0 1 0 1 0

EC/NC 0 98 1 1 0 0 0 0
EO/C 0 0 98 0 0 1 1 0

EO/NC 2 0 1 96 0 1 0 0
DM/H 0 2 3 5 88 0 2 0
DM11 0 13 6 12 1 64 3 1
MPH 0 0 1 0 2 0 97 0
MP/L 0 1 2 1 0 0 0 96

Composite Accuracy (%): 91.75

EC - Eyes Closed C - Counting
EO - Eyes Open NC - Not Counting
DM - Display Monitoring H - High
MP - Math Processing L - Low

Table G16.
Neural Network - Testing Set Analysis (Subject 8)

EC/C EC/NC EO/C EO/NC DM/H DM/L MP/H MP4.
EC/C 10 15 5 20 15 5 15 15

EC/NC 5 20 15 10 25 5 15 5
EO/C 20 0 35 10 20 5 5 5

EO/NC 5 0 10 25 25 10 5 20
DM/H 10 10 0 0 55 0 10 15
DM/L 15 15 15 5 0 30 10 10

MP/IH 5 5 15 0 0 20 45 5
MP/I 10 15 5 5 15 0 10 40

Composite Accuracy (%): 34.38

EC - Eyes Closed C - Counting
EO - Eyes Open NC - Not Counting
DM - Display Monitoring H - High
MP - Math Processing L - Low
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